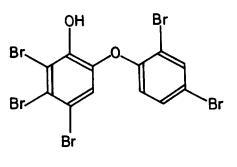
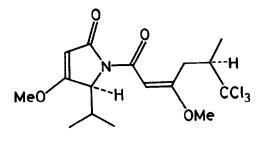
A DIKETOPIPERAZINE DERIVED FROM TRICHLOROLEUCINE FROM THE SPONGE DYSIDEA HERBACEA

R. Kazlauskas, P.T. Murphy and R.J. Wells*

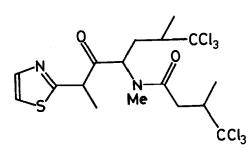
Roche Research Institute of Marine Pharmacology, PO Box 255, Dee Why, NSW 2099, Australia.

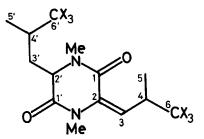

<u>Dysidea</u> <u>herbacea</u> is a Dictyoceratid sponge which is common throughout the Indo-Pacific region. Previous studies¹⁻³ have shown that the secondary metabolites derived from various collections of this sponge are diverse, ranging from polybromodiphenyl ethers, of which (1) is an example¹, to compounds derived from amino-acids and containing trichloromethyl-groups. Two examples dysidin (2) and dysidenin (3) have recently been reported^{2,3}. We now report a further variant of this sponge, collected near Gladstone, Queensland, Australia, which has yielded a diketopiperazine derivative (4) of an N-methyltrichloroleucine.

Extraction of a small freeze dried sample of <u>D. herbacea</u> with CH_2Cl_2 followed by p.l.c. separation of the extract on silica gel $(CH_2Cl_2/EtOAc: 4/1)$ yielded (4) m.p. 106-107°, $[\alpha]_D^{20}$ -144° (c=0.5, $CHCl_3$) in 1% yield. The formula $C_{14}H_{18}Cl_6N_2O_2$ was established by high resolution mass spectrometry and the presence of two trichloro-methyl groups in the molecule was indicated by the ¹³C n.m.r. spectrum which showed two singlets at 105.0 and 104.1 typical of this grouping^{2,3}. The remainder of the ¹³C n.m.r. consisted of resonances at 165.4 (2) and 159.7 (s) (2 x O=C-N-); 131.6 (s) and 123.7 (d) (-CH=C-); 61.9 (d), 51.5 (d, 2C), 37.7 (t), 33.8 (q), 31.2 (q), 18.4 (q) and 17.6 (q). Compound (4) was therefore monocyclic with two carbonyl groups and one trisubstituted double bond.

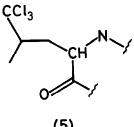

The ¹H n.m.r. spectra of (4) in CDCl₃ and C_6D_6 is shown in Table 1. Extensive decoupling suggested partial structures (5) and (6) and the presence of two -N-Me singlets, together with i.r. and ¹³C n.m.r. data, indicated the presence of two -CO-N-Me groups. The diketopiperazine structure (4) best fitted these data and the stereochemistry about the double bond was deduced from the unusually low field position of the C4 proton in the ¹H n.m.r. spectrum of (4) and (7) (see below), due to deshielding by the amide carbonyl group.

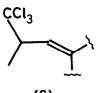
Reduction of (4) with zinc-acetic acid gave the dechlorinated analogue (7), m.p. 99-100° $\left[\alpha\right]_{D}^{20}$ -86° (c=0.5, CHCl₃), the ¹H n.m.r. spectrum of which (Table 1) was entirely consistent with the proposed structure. The mass spectrum showed a molecular ion at m/e 252 with the major fragment ion at m/e 195 (100%; M⁺-C₄H₉). Hydrogenation of (7) gave the single optically active compound (8) m.p. 90-95° $\left[\alpha\right]_{D}^{20}$ +60° (c=0.6, CHCl₃).

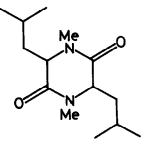

4945



(1)


(2)




(4) X = CI(7) X = H

(8)

The extreme variability of the secondary metabolites of <u>D. herbacea</u> is curious, particularly in view of the nature of these metabolites. The presence of either polybrominated diphenyl ethers¹ or polychlorinated amino acid derivatives^{2,3} has been documented and the biosynthetic origin of both these classes of compounds contrasts markedly with isolates, usually terpenoid, reported from other members of the sponge Family Dysidideae.

A microscopic examination of various forms of <u>D. herbacea</u>, which is by habit a thin encrusting sponge, has revealed the presence of blue-green algae, at times representing half the cellular weight of the sample⁴. Amino acid derived metabolites have been reported from bluegreen algae and the diverse secondary metabolites obtained from separate collections of <u>D. herbacea</u> are most readily rationalised as arising from different blue-green algal symbionts.

TABLE 1

Chemical shifts and coupling constants of the diketopiperazine (4) and some derivatives

	(4):- CDC1 ₃	(4):- benzene-d ₆	(7):- benzene-d ₆	(8):- CC1 ₄
C2'-H	4.04,1H,dd		3.62,1H,dd,J6,6Hz	2.70,2H,dd,J6,8Hz(+C2-H)
СЗ -Н	5.69,1H,d,J9Hz		5.00,1H,d,J9Hz	
C3'-H_	1.76,1H,m 2.47,1H,m	1.54,1H,m	1.44,2H,m	1.6,4H,m
C3'-H _R		2.36,1H,m		
С4 -Н	5.18,1H,dq,J6,9Hz	5.50,2H,m	3.96,H,m	1.9,2H,m
.C4'-H	2.70,1H,m	2.64,1H,m	1.70,1H,m	
C5 –H	1.38,6H,d,J6Hz	1.12,3H,d,J6Hz	0.94,3H,d,J6Hz	0.98,6H,d,J6Hz
C5'-H		1.31,3H,d,J6Hz	d,J6Hz 0.69,3H,d,J6Hz	
C6 -H			1.15,3H,d,J6Hz	
C6'-H			0.79,3H,d,J6Hz	1.02,6H,d,J6Hz
N-CH3	3.08,3H,s	2.56,3H,s	2.59,3H,s	2.96,6H,s
N-CH3	3.22,3H,s	2.82,3H,s	2.78,3H,s	

REFERENCES

- (a) G.M. Sharma, B. Vig and P.R. Burkholder. <u>Food-drugs from the sea, Proc.</u>, Marine Technol. Soc. 307 (1969).
 - (b) G.M. Sharma and B. Vig. <u>Tetrahedron Letters</u>, 1715 (1972).
- 2. W. Hofheinz and W.E. Oberhänsli. Helv. Chim. Acta, 60, 660 (1977).
- 3. R. Kazlauskas, R.O. Lidgard, R.J. Wells and W. Vetter. <u>Tetrahedron Letters</u>, 3183 (1977).
- 4. L. Borowitzka, personal communication.

(Received in UK 18 September 1978)